CO Oxidation at the Au–Cu Interface of Bimetallic Nanoclusters Supported on CeO2(111)
نویسندگان
چکیده
منابع مشابه
CO Oxidation at the Au − Cu Interface of Bimetallic Nanoclusters
DFT+U calculations of the structure of CeO2(111)-supported Aubased bimetallic nanoclusters (NCs) show that a strong support−metal interaction induces a preferential segregation of the more reactive element to the NC−CeO2 perimeter, generating an interface with the Au component. We studied several Au -based bimetallic NCs (Au-X, X: Ag, Cu, Pd, Pt, Rh, and Ru) and found that (Au− Cu)/CeO2 is opti...
متن کاملCO Oxidation at the Interface between Doped CeO2 and Supported Au Nanoclusters.
DFT+U calculations of CO oxidation by Au13 nanoclusters (NCs) supported on either CeO2 or doped (X-Ce)O2 (X = Au, Pt, Pd, Ti, Ru, Zr) show that doping the CeO2 support accelerates CO oxidation by the Mars-van Krevelen mechanism at the Au-(X-Ce)O2 interface. We find that Au, Pd, Pt, and Ti dopants significantly lower the vacancy formation energy of the CeO2 support and that electron donation fro...
متن کاملA computational study of supported Cu-based bimetallic nanoclusters for CO oxidation.
In this study, we used DFT calculations to investigate the bi-functional nature of Cu-based alloy nanoclusters (NCs) supported on CeO2(111) for CO oxidation. More specifically, we studied the reaction pathways on Cu3Pt7 and Cu3Rh7via the O2 associative (OCOO) and dissociative mechanisms. We find that CO oxidation on Cu3Pt7 proceeds via the O2 dissociation pathway, while Cu3Rh7 prefers the OCOO ...
متن کاملPhotoluminescent AuCu bimetallic nanoclusters as pH sensors and catalysts.
A facile and one-pot approach to the preparation of gold (Au) and copper (Cu) bimetallic nanoclusters (NCs) is unveiled. AuCu NCs reveal features of orange photoluminescence (PL), reversible pH-dependent PL properties, and efficient catalytic activity for degradation of methylene blue (MB).
متن کاملChemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters.
Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis at conditions typical of its industrial practice. CO oxidation turnover rates and the dynamics and thermodynamics of adsorption-desorption processes on clus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry Letters
سال: 2013
ISSN: 1948-7185
DOI: 10.1021/jz401524d